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Abstract

The classical stochastic Helmholtz equation grasps, through the random field of the refraction index, the
spatial variability in the mass density but not the variability in elastic moduli or geometric parameters. In
contradistinction to this restriction, the present analysis accounts for the spatial randomness of mass
density as well as those of elastic properties and cross-sectional geometric properties of rods undergoing
longitudinal vibrations and of Timoshenko beams in flexural vibrations. All the material variabilities are
described here by random Fourier series with a typical (average) characteristic size of inhomogeneity d;
which is either smaller, comparable to, or larger than the wavelength. The third length scale entering the
problem, but kept constant, is the rod or beam length. We investigate the relative effects of random noises
in all the material parameters on the spectral stiffness matrices associated with rods and beams for a very
wide range of frequencies.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

1.1. Background

Dynamics of any structure involves wave propagation in all the members of the structure.
Therefore, a structural dynamics analysis should be based on the governing elastodynamic
equations. This is best accomplished by a so-called spectral approach. In it, the response of each
and every structural member is described by a stiffness matrix in the frequency space which is
appropriately called a spectral finite element. The classical static stiffness matrix is actually
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obtained from the spectral stiffness matrix in a zero-frequency limit. By connecting all the
elements according to the spatial geometry, a global stiffness matrix is constructed and a global
response due to a specified impulse is studied first by going over all the frequencies and then by
transforming to the time domain, which is conveniently done by the fast Fourier transform (FFT);
see, for example, Ref. [1].
The overwhelming majority of natural as well as man-made materials are characterized by the

presence of imperfect microstructures. This introduces a length scale d; the typical size of
inhomogeneity, in addition to the two scales (the typical wavelength l and the element size L)
already present in the classical formulation. As a result, the spectral matrix of any given finite
element should reflect an interplay of three length scales: the element size L; the typical
wavelength l; and the typical size of inhomogeneity d:
Let us note here that the classical stochastic Helmholtz equation (e.g., Refs. [2,3])

r2u þ k2
0n2ðx;oÞu ¼ f ðxÞ; oAO; ð1Þ

grasps, through the random field of refraction index, the spatial variability in the mass density but
not the variability in elastic modulus or cross-section. This is immediately seen by considering the
equation governing axial motions in a rod with the space dependent mass density r; elastic
modulus E; and cross-sectional area A; namely

@

@x
Aðx;oÞEðx;oÞ

@

@x
uðx; tÞ

� �
¼ rðx;oÞAðx;oÞ

@2

@t2
uðx; tÞ; oAO: ð2Þ

In the above, o denotes an element of the sample space O: Thus, rðx;oÞ stands for one realization
of the random field of density r ¼ frðx;oÞ; xAX ;oAOg over a domain X ; and similarly with E

and A:
In contradistinction to the restriction implicit in Eq. (1), the analysis reported here accounts for

the spatial variabilities of mass density as well as those of elastic properties and cross-sectional
geometric properties of a rod governed by Eq. (2). In effect, we conduct a study of the
imperfection sensitivity of the spectral stiffness matrices, whereby the characteristic size of
inhomogeneity—either in E; or r; or A—varies from dol through d > l: This study constitutes
the first part of the paper. First, for completeness, in Section 2, we derive a simpler form of the
spectral finite element for the Helmholtz equation than ever reported before. Then, in Section 3,
we turn to the stochastic problem, and set up a numerical method for solving Eq. (2) in the
frequency domain whereby the material and geometric properties of the rod are modelled as
random Fourier series. Section 4 contains a discussion of the results of our parameter studies with
a focus on the k11 coefficient of the spectral matrix.
In the second part, in an analogous fashion, we consider dynamics of Timoshenko beams with

spatially random properties

@

@x
GAk

@v

@x
� f

� �� �
¼

@2v

@t2
;

@

@x
EI

@f
@x

� �
þ GAk

@v

@x
� f

� �
þ rIo2f ¼

@2f
@t2

: ð3Þ
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It is well known that there are two kinds of wave motion in such a beam: flexural and rotational.
We focus on the first of these so as to keep the results to manageable proportions. The spatial
inhomogeneity is modelled again by random Fourier series, although it now involves five (rather
than three) independent parameters appearing in the governing equations: mass density r; elastic
modulus E; the Poisson ratio n; area A and moment of inertia I of the cross-section. It is more
physical, however, to work with the cross-sectional height h and cross-sectional width w instead of
the latter two. Thus, the beam is described by a five component random field ½r;E; n; h;w
: Given
the need to conduct our study by computational methods, we can focus on select aspects of the
problem at hand. Thus, we choose to analyze the imperfection sensitivity of the coefficient k11 in
the spectral matrix; this coefficient relates the transverse displacement to the shear force at one
end of the beam. And we do so when the characteristic size of inhomogeneity in E; n; r; h; or w
varies from dol through d > l: In Section 5, we review the spectral finite element for the
deterministic Timoshenko beam. In Section 6, we set up the stochastic Timoshenko beam
equations and then set up a numerical method for solving them in the frequency domain when all
or only some of the material and geometric properties of the beam are random. Section 7 contains
a discussion of numerical results. The paper concludes in Section 8.
Our research has been motivated by a need to better understand the elastodynamics of paper

and concrete, two materials which are well known to possess random, multiscale structures. The
particular numbers we choose below for material parameters of rods and beams correspond to
concrete.

2. Spectral finite element for 1-D wave motion in a homogeneous rod

The elastodynamic equation governing the axial response of a rod (assuming zero external
forcing) is well known

@2u

@x2
¼

1

c2a

@2u

@t2
: ð4Þ

Here ca ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
denotes the phase velocity of axial waves; E being the elastic axial modulus and

r the mass density.
Let us now consider harmonic motions according to uðx; tÞ ¼ #uðxÞeigt; g being the frequency.

Then, the spectral matrix expresses a connection between the kinematic and the dynamic
quantities—i.e., f #u1; #u2g with f #F1; #F2g—at both ends of the rod: 1 and 2. The hat signifies that the
quantities are in the frequency space. The derivation of the spectral stiffness matrix is carried out
as follows. For the Helmholtz equation corresponding to the 1-D wave equation (4) set up over
the domain X of size L;

d2 #u

dx2
þ k2 #u ¼ 0; uð0Þ ¼ #u1; uðLÞ ¼ #u2; ð5Þ

with k ¼ g=ca; we consider a solution in the form

#uðxÞ ¼ A sin kxþ B sin kðL � xÞ: ð6Þ
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From the boundary conditions ð5Þ2;3 we immediately get A ¼ #u2=sin kL and B ¼ #u1=sin kL; so that
Eq. (5) becomes

#uðxÞ ¼
#u1 sin kðL � xÞ þ #u2 sin kx

sin kL
: ð7Þ

Differentiating with respect to x; we find a force along x as

#FðxÞ ¼ AE
� #u1k cos kðL � xÞ þ #u2k cos kx

sin kL
; ð8Þ

which, with the definitions #F1 ¼ � #Fð0Þ and #F2 ¼ #FðLÞ; yields the spectral matrix

#F1

#F2

" #
¼ AE

k cot kL �k csc kL

�k csc kL k cot kL

" #
#u1

#u2

" #
: ð9Þ

Note that this representation of the spectral matrix is more compact than the representation
found in Ref. [1] since, in Eq. (9), the purely real nature of the matrix is apparent. The 11-
component of this matrix is plotted in Figs. 1–3 parts (a), in black, as the reference case. (See
Ref. [1] for the 12-component.) The peaks of k cot kL in these figures represent the resonant
frequencies of the system with A ¼ 10�4 m; E ¼ 27:4 GPa and r ¼ 2400 kg=m3—this corre-
sponds to a rod made of concrete. It is the change from this ‘crisp’ functional form which is of
interest to us in the random media case.

3. Spectral finite element for 1-D wave motion in an inhomogeneous rod

We now consider a frequency space version of the stochastic equation (2) with Dirichlet
boundary conditions

d

dx
Aðx;oÞEðx;oÞ

d #u

dx

� �
þ rðx;oÞAðx;oÞ #uðxÞ ¼ 0; oAO;

#uð0Þ ¼ #u1; #uð1Þ ¼ #u2: ð10Þ

There are many ways to model imperfect microstructures (e.g., Ref. [4]), and some choices have
to be made in the case of beams which themselves are one-dimensional models of three-
dimensional bodies. Here we assume the mass density, elastic modulus, and cross-sectional area to
vary as

Aðx;oÞ ¼ A0 1þ eA

X10
i¼1

ðaðiÞA ðoÞ cos igx þ b
ðiÞ
A ðoÞ sin igxÞ

" #
;

rðx;oÞ ¼ r0 1þ er
X10
i¼1

ðaðiÞ
r ðoÞ cos igx þ bðiÞr ðoÞ sin igxÞ

" #
;

Eðx;oÞ ¼ E0 1þ eE

X10
i¼1

ðaðiÞ
E ðoÞ cos igx þ b

ðiÞ
E ðoÞ sin igxÞ

" #
; ð11Þ
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Fig. 1. Rod vibrations in the case of random density r showing k11 (black line) for the reference homogeneous medium

and /k11S (grey line) for the random case with: (a) g ¼ 0:1; (b) g ¼ 1:0; (c) g ¼ 10:0:
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Fig. 2. Rod vibrations in the case of random modulus E showing k11 (black line) for the reference homogeneous

medium and /k11S (grey line) for the random case with: (a) g ¼ 0:1; (b) g ¼ 1:0; (c) g ¼ 10:0:
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Fig. 3. Rod vibrations in the case of random cross-sectional area A showing k11 (black line) for the reference

homogeneous medium and mean /k11S (grey line) for the random case with: (a) g ¼ 0:1; (b) g ¼ 1:0; (c) g ¼ 10:0:
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where for i ¼ 1;y; 10; a
ðiÞ
A ðoÞ;y; bðiÞE ðoÞ come from a uniform distribution on ½�1

2
; 1
2

 and oAO:

The purpose of this model is not to approximate some ‘‘nice’’ function, but rather, to have a
random process model of band-limited type.
We determine the relation

#F1

#F2

" #
¼

k11 k12

k21 k22

" #
#u1

#u2

" #
; ð12Þ

as follows. First, for each g ¼ 0:1; 1; and 10; we employ a boundary value problem solver [5] to
numerically solve Eq. (10) with the following sets of boundary conditions:

#u1ð0Þ ¼ 0:0; #u1ð1Þ ¼ 0:0;

#u2ð0Þ ¼ 0:001; #u2ð1Þ ¼ 0:0;

#u3ð0Þ ¼ 0:0; #u3ð1Þ ¼ 0:001;

#u4ð0Þ ¼ 0:001; #u4ð1Þ ¼ 0:001;

#u5ð0Þ ¼ 0:0005; #u5ð1Þ ¼ 0:0005: ð13Þ

Now, since #FðxÞ ¼ AE #u0ðxÞ and the boundary value problem solver generates the values of #u0 at
each of the mesh points as part of the numerical solution we may simply calculate the forces at the
ends of the rod. They are given by

#Fð0Þ ¼ �AE #u0ð0Þ and #Fð1Þ ¼ AE #u0ð1Þ: ð14Þ

Thus, the five sets of boundary conditions in Eqs. (13) lead to the following over-determined
linear systems:

#u1ð0Þ #u1ð1Þ

#u2ð0Þ #u2ð1Þ

#u3ð0Þ #u3ð1Þ

#u4ð0Þ #u4ð1Þ

#u5ð0Þ #u5ð1Þ

2
6666664

3
7777775

C11

C12

" #
¼

#F1ð0Þ
#F2ð0Þ
#F3ð0Þ
#F4ð0Þ
#F5ð0Þ

2
66666664

3
77777775
; ð15Þ

and
#u1ð0Þ #u1ð1Þ

#u2ð0Þ #u2ð1Þ

#u3ð0Þ #u3ð1Þ

#u4ð0Þ #u4ð1Þ

#u5ð0Þ #u5ð1Þ

2
6666664

3
7777775

C21

C22

" #
¼

#F1ð1Þ
#F2ð1Þ
#F3ð1Þ
#F4ð1Þ
#F5ð1Þ

2
66666664

3
77777775
; ð16Þ

where Cij ; i; j ¼ 1; 2; are unknown constants. In fact, the Cij are the elements of the stiffness matrix
we seek; that is, kij ¼ Cij; for i; j ¼ 1; 2: These constants may be determined by solving the linear
least-squares problems

min
K1

jb1 � AK1j; ð17Þ
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and
min
K2

jb2 � AK2j; ð18Þ

where

A ¼

#u1ð0Þ #u1ð1Þ

#u2ð0Þ #u2ð1Þ

#u3ð0Þ #u3ð1Þ

#u4ð0Þ #u4ð1Þ

#u5ð0Þ #u5ð1Þ

2
6666664

3
7777775
; ð19Þ

b1 ¼

#F1ð0Þ
#F2ð0Þ
#F3ð0Þ
#F4ð0Þ
#F5ð0Þ

2
66666664

3
77777775
; b2 ¼

#F1ð1Þ
#F2ð1Þ
#F3ð1Þ
#F4ð1Þ
#F5ð1Þ

2
66666664

3
77777775
; ð20Þ

and

K1 ¼
k11

k12

" #
; K2 ¼

k21

k22

" #
: ð21Þ

In this manner, the stiffness matrix of Eq. (30) is approximated.
We note here that the stiffness matrix, for a single realization oAO; is not symmetric ðk12ak21Þ

and, also, k11ak22: Both of these facts results from the lack of spatial symmetry in perturbation
(11), for a given oAO; with respect to the midpoint x ¼ L=2 of the studied domain. However, in
the ensemble setting—when the system is statistically homogenized—the averages satisfy /k12S ¼
/k21S and /k11S ¼ /k22S:

4. Results, remarks, and conclusions

The first entry, i.e., k11; of these matrices is shown in Figs. 1–3 for the separate cases of
inhomogeneity in r; E; and A: In each figure plots (a), (b), and (c) correspond, respectively, to g
taking values 0:1; 1; and 10: Each particular plot gives k11 in the reference (deterministic) case of
Section 2, as well as the corresponding ensemble average /k11S of the random medium case. The
deterministic case is shown as a crisp, black line, while the random case is shown as a grey thicker
line, possibly overlapping the first one. Thus, whenever we only see the grey line, there is no
difference between the deterministic and the mean of the stochastic problem.
In the numerical studies, we perform a Monte Carlo simulation with 100 realizations and

calculate the first moment for each of the cases mentioned above. We also ran a few of the above
parameter studies with 1000 realizations. The results were very similar to the ones we got for 100
realizations and we concluded that, for the sake of saving computational time, 100 realizations
will suffice.
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The results we obtain by letting either r or E vary are very similar so we will discuss them
together. First, we note that letting these two quantities vary produces a large effect with small to
moderate g: By a large effect we mean a strong departure from the reference case at and around
the resonant frequencies. Note that the ‘scatter interval’ increases with increasing frequency. The
effects decrease with increasing g but, regardless of the value of g; the effects are most noticeable
at higher frequencies. However, variable density has practically no effect for g ¼ 100:0 while there
is a noticeable effect, especially at higher frequencies, from the variable modulus for the same g:
When A alone is allowed to vary, we see practically no effect for g ¼ 0:01 or 0:1: For g ¼ 1:0;

there is a noticeable effect present for low to mid-range frequencies. However, this effect vanishes
at higher frequencies. As g is increased to 10:0; the effect is weaker for lower frequencies but is
quite pronounced in the mid to high-frequency range. Finally, when g ¼ 100:0; the effect all but
vanishes for low frequencies but is still noticeable for higher frequencies.
We ran the parameter studies for the same values of g discussed above but allowed r; E; and A

all to vary at once. We found trends that should be expected based on the discussion above. In
particular, for g ¼ 0:01; 0:1; and 1:0; the graphs of the moments for the case when all three
parameters vary at once are very similar, qualitatively, to the graphs of the moments for letting
density and modulus vary one at a time except that, even at low frequencies, the interval over
which the effect is noticeable is larger. For g ¼ 10:0; letting all three parameters vary at once leads
to graphs for the moments which look very similar to the graphs generated for the case of varying
A alone except that, again, the interval over which the effect is noticeable is larger. Also,
particularly at higher frequencies, this case also resembles the case of varying E alone (for
g ¼ 10:0). Finally, for g ¼ 100:0; letting all three parameters vary at once again leads to graphs for
the moments which look very similar to the graphs generated by letting either E or A vary alone.
In particular, the effects are most noticeable at higher frequencies.

5. Spectral finite element for 1-D wave motion in a homogeneous Timoshenko beam

The frequency space equations governing the transverse deflection vðx; tÞ ¼ #vðxÞeigt and the
transverse shearing deformation w (as measured by the difference @v=@x � f; with
fðx; tÞ ¼ #fðxÞeigt) of a Timoshenko beam, assuming zero external forcing, are well known

GAk
d2 #v

dx2
�

d #f
dx

 !
þ rAg2 #v ¼ 0;

EI
d2 #f
dx2

þ GAk
d#v

dx
� #f

� �
þ rIg2 #f ¼ 0: ð22Þ

Here, G is the shear modulus, A is the cross-sectional area, k is the shape factor of the cross-
section, r is the mass density, E is the elastic modulus, and I is the cross-sectional-area moment of
inertia [6].
The spectral stiffness matrix expresses a connection between the kinematic and the dynamical

quantities—i.e., f#v1; #f1; #v2; #f2g with f #V1; #M1; #V2; #M2g—at both ends of the beam. The derivation
of the spectral stiffness matrix is as follows. For the Timoshenko beam equations (22) along with
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the boundary conditions
#vð0Þ ¼ #v1; #fð0Þ ¼ #f1;

#vðLÞ ¼ #v2; #fðLÞ ¼ #f2 ð23Þ

set up over a domain of length L; we consider a solution of the form

#vðxÞ ¼ B1Rt cos k1x � B2Rt sin k1x þ C1Rh cosh k2x þ C2Rh sinh k2x;

#fðxÞ ¼ B1 sin k1x þ B2 cos k1x þ C1 sinh k2x þ C2 cosh k2x; ð24Þ

where Rt and Rh are the so-called amplitude ratios and are given by

Rt ¼
GAkk1

rAg2 � GAkk2
1

; Rh ¼
GAkk2

rAg2 þ GAkk2
2

: ð25Þ

The boundary conditions of Eqs. (23) specify the constants B1; B2; C1; and C2 in Eq. (24) and,
upon determination of these constants, we may employ Eq. (24) and the relations

#VðxÞ ¼ �EI
d2 #f
dx2

� rIo2 #f;

#MðxÞ ¼ EI
d #f
dx

ð26Þ

to finish the derivation of the stiffness matrix. However, since this is a long and complicated
calculation, we do not reproduce it here. Instead, we refer the reader to Ref. [1] for a complete
derivation.
The 11-component of this stiffness matrix is plotted in Figs. 4–8 part (a), in black, as the

reference case. The peaks in these figures represent the resonant frequencies of the system with
w ¼ 10�2 m; h ¼ 10�2 m; E ¼ 27:4 GPa; n ¼ 0:0; and r ¼ 2400 kg=m3—this again corresponds to
a beam made of concrete. In the next section, we develop a method—analogous to that in Section
3—to determine the departure from this ‘crisp’ form due to material spatial inhomogeneities.

6. Spectral finite element for 1-D wave motion in an inhomogeneous Timoshenko beam

The frequency space equations of an inhomogeneous Timoshenko beam were given in Eqs. (3).
We study a beam with rectangular cross-section having width w; height h; and the Poisson ratio n:
For this case, we have the following relations:

A ¼ hw; I ¼
h3w

12
; G ¼

E

2ð1þ nÞ
: ð27Þ

Substituting Eq. (27) into Eqs. (3), we have

d

dx

Ehwk
2ð1þ nÞ

d#v

dx
� #f

� �� �
þ rhwg2v ¼ 0;

d

dx

Eh3w

12

d #f
dx

" #
þ

Ehwk
2ð1þ nÞ

dv

dx
� #f

� �
þ
rh3w

12
g2 #f ¼ 0: ð28Þ
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Fig. 4. Timoshenko beam vibrations in the case of random density r showing k11 (black line) for the reference

homogeneous medium and mean /k11S (grey line) for the random case with: (a) g ¼ 0:1; (b) g ¼ 1:0; (c) g ¼ 10:0:
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Fig. 5. Timoshenko beam vibrations in the case of random modulus E showing k11 (black line) for the reference

homogeneous medium and mean /k11S (grey line) for the random case with: (a) g ¼ 0:1; (b) g ¼ 1:0; (c) g ¼ 10:0:
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Fig. 6. Timoshenko beam vibrations in the case of random beam the Poisson ratio n showing k11 (black line) for the

reference homogeneous medium and mean /k11S (grey line) for the random case with: (a) g ¼ 0:1; (b) g ¼ 1:0; (c)
g ¼ 10:0:
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Fig. 7. Timoshenko beam vibrations in the case of random beam height h showing k11 (black line) for the reference

homogeneous medium and mean /k11S (grey line) for the random case with: (a) g ¼ 0:1; (b) g ¼ 1:0; (c) g ¼ 10:0:
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Fig. 8. Timoshenko beam vibrations in the case of random beam width w showing k11 (black line) for the reference

homogeneous medium and mean /k11S (grey line) for the random case with: (a) g ¼ 0:1; (b) g ¼ 1:0; (c) g ¼ 10:0:
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We assume the mass density, elastic modulus, cross-sectional height, cross-sectional width, and
the Poisson ratio to vary as

rðx;oÞ ¼ r0 1þ er
X10
i¼1

ðaðiÞ
r ðoÞ cos igx þ bðiÞr ðoÞ sin igxÞ

" #
;

Eðx;oÞ ¼ E0 1þ eE

X10
i¼1

ðaðiÞE ðoÞ cos igx þ b
ðiÞ
E ðoÞ sin igxÞ

" #
;

hðx;oÞ ¼ h0 1þ eh

X10
i¼1

ðaðiÞh ðoÞ cos igx þ b
ðiÞ
h ðoÞ sin igxÞ

" #
;

wðx;oÞ ¼ w0 1þ ew

X10
i¼1

ðaðiÞ
w ðoÞ cos igx þ bðiÞ

w ðoÞ sin igxÞ

" #
;

nðx;oÞ ¼ n0 1þ en
X10
i¼1

ðaðiÞn ðoÞ cos igx þ bðiÞn ðoÞ sin igxÞ

" #
; ð29Þ

where for i ¼ 1;y; 10; aðiÞ
r ðoÞ;y; bðiÞn ðoÞ come from a uniform distribution on ½�1

2
; 1
2

 and oAO: As

in the case of longitudinal vibrations of a rod, the purpose of this model is not to approximate
some ‘‘nice’’ function, but rather, to have a random process model of band-limited type.
We compute the stiffness matrix; that is, we determine the relation

#V1

#M1

#V2

#M2

2
66664

3
77775 ¼

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

2
6664

3
7775

#v1

#f1

#v2

#f2

2
66664

3
77775; ð30Þ

in a manner completely analogous to the technique used to compute the spectral stiffness matrix
for one-dimensional wave motion in an inhomogeneous rod in the first part of this paper.

7. Results, remarks, and conclusions

For the numerical studies, we first let the parameters r; E; h; w; and n vary one at a time for g
ranging, by powers of 10; between 10�2 and 102:With this setup, and having 10 terms in Eqs. (29),
we cover a range of frequencies over five orders of magnitude (decades). We perform a Monte
Carlo simulation with 100 realizations and calculate the first four moments for each of the cases
mentioned above. The first entry, i.e., k11; of these matrices is shown in Figs. 4–8 for the separate
cases of inhomogeneity in r; E; h; w; and n: In each figure plots (a), (b), and (c) correspond,
respectively, to g taking values 0:1; 1; and 10: Each particular plot gives k11 in the reference
(deterministic) case of Section 5, as well as the corresponding ensemble average /k11S of the
random medium case. The deterministic case is shown as a crisp, black line, while the random case
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is shown as a grey thicker line, possibly overlapping the first one. Thus, whenever we only see the a
grey line, there is no difference between the deterministic and the mean of the stochastic problem.
Figs. 1, 2, and 4 show that letting r; E; or h vary for g ¼ 0:1 and 1:0 has a significant impact on

the averaged solution for all but the lowest frequencies. In fact, for g ¼ 0:01 (case not shown
here), after no more than 10 kHz; the averaged solution /k11S resembles random noise. In fact,
this disordered behaviour is a result of shifts in the resonant frequencies of the solution for various
realizations. The conclusion, then, is that for these low values of g; we can rely on a homogenized
solution in only the lowest frequency ranges. The situation improves as we go to higher g values
for r; E; and h: Already at g ¼ 1:0; there is some agreement between the deterministic and the
mean at lower frequencies. As we go to g ¼ 10:0 and 100:0 (case not shown here), we tend to have
an excellent agreement.
As we see from Figs. 6 and 8, the effect of varying w or n for any value of g has almost no effect

on the averaged solution at any of the frequency levels we studied. This holds true for g ¼ 0:01 or
100:0 as well.
We ran the parameter studies for the same values of g discussed above but allowed all five

parameters r; E; h; w; and n to vary at once. We found trends analogous to those established
above, and in the same vein as those found for vibrations of rods. That is, whenever we are in the
range characterized by high sensitivity to randomness of at least one of five parameters, the
response is sensitive again or even more disordered than before.

8. Closure

There is a need to gain insight into the dynamics and vibrations of imperfect, structural
elements (rods, beams, etc.) as well as large and complex structures made of such components,
also in the presence of random properties, see, e.g., Ref. [7]. Recently, progress has been made on
elastodynamics of structures described by random fields, see Refs. [8–11] and references therein.
The present study should also contribute to an understanding in this area, and especially with
respect to axial and flexural vibrations. It has been motivated in the first place by the
elastodynamics of concrete and paper, two multiscale materials.
In the context of stochastic mechanics (e.g., Refs. [3,4]), our Eqs. (2) and (3) fall in a general

class of problems described by equation

LðoÞf ¼ f ; oAO; ð31Þ

where LðoÞ is the differential operator with random field coefficients, f is the sought field, f is
the forcing, and O is the sample space of elementary outcomes o (realizations of the random
field). Now, the correct average solution /fS is, in principle, obtained from /L�1S�1f ¼ f :
Almost always, this is different from what would be obtained by straightforward averaging of
(1.1): /LSu ¼ f : The latter, in fact, is the conventional route of phenomenological deterministic
continuum mechanics without regard for microstructural randomness. Black and grey plots in
each of our figures correspond to /LS and /L�1S�1; respectively.
Introduction of spatial random inhomogeneities into wave mechanics potentially leads to new

phenomena, yet their analysis comes at a price of having to solve very difficult governing
stochastic equations. In our case these are Eqs. (2) and (3) that are rarely stated in the literature.
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At present, there are no satisfactory mathematical methods for their treatment—for instance, the
method of Ref. [12] works only in the limits d5l or dbl: We thus opted for a numerical study
rather than to attempt any approximate methods whose rigor is uncertain. Our computational
method is not original per se, but the parametric investigation is. Of course, depending on a
specific model picked from a wide variety of possibilities, the quantitative results will differ.
However, the diffusion of resonances away from those of homogeneous rod and beam will always
occur. In particular, in the case of rods, the effects of random mass density and elastic modulus—
but not of cross-sectional area—are strong. In the case of beams, the effects of random mass
density, elastic modulus, and beam’s height—but not of the Poisson ratio and beam’s width—are
strong. Another new aspect, not shown due to the lack of space, is the very high level of second,
third and fourth moments of response for a much weaker level of noise in the material.
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